
NAG C Library Function Document

nag_dspcon (f07pgc)

1 Purpose

nag_dspcon (f07pgc) estimates the condition number of a real symmetric indefinite matrix A, where A has
been factorized by nag_dsptrf (f07pdc), using packed storage.

2 Specification

void nag_dspcon (Nag_OrderType order, Nag_UploType uplo, Integer n,
const double ap[], const Integer ipiv[], double anorm, double *rcond,
NagError *fail)

3 Description

nag_dspcon (f07pgc) estimates the condition number (in the 1-norm) of a real symmetric indefinite matrix
A:

�1ðAÞ ¼ kAk1kA
�1k1:

Since A is symmetric, �1ðAÞ ¼ �1ðAÞ ¼ kAk1kA�1k1.

Because �1ðAÞ is infinite if A is singular, the function actually returns an estimate of the reciprocal of
�1ðAÞ.
The function should be preceded by a call to nag_dsp_norm (f16rdc) to compute kAk1 and a call to

nag_dsptrf (f07pdc) to compute the Bunch–Kaufman factorization of A. The function then uses Higham’s

implementation of Hager’s method (see Higham (1988)) to estimate kA�1k1.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates how A has been factorized as follows:

if uplo ¼ Nag Upper, A ¼ PUDUTPT , where U is upper triangular;

if uplo ¼ Nag Lower, A ¼ PLDLTPT , where L is lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

f07 – Linear Equations (LAPACK) f07pgc

[NP3645/7] f07pgc.1

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

4: ap½dim� – const double Input

Note: the dimension, dim, of the array ap must be at least maxð1; n� ðnþ 1Þ=2Þ.
On entry: details of the factorization of A stored in packed form, as returned by nag_dsptrf
(f07pdc).

5: ipiv½dim� – const Integer Input

Note: the dimension, dim, of the array ipiv must be at least maxð1; nÞ.
On entry: details of the interchanges and the block structure of D, as returned by nag_dsptrf
(f07pdc).

6: anorm – double Input

On entry: the 1-norm of the original matrix A, which may be computed by calling nag_dsp_norm
(f16rdc). anorm must be computed either before calling nag_dsptrf (f07pdc) or else from a copy of
the original matrix A.

Constraint: anorm � 0:0.

7: rcond – double * Output

On exit: an estimate of the reciprocal of the condition number of A. rcond is set to zero if exact
singularity is detected or the estimate underflows. If rcond is less than machine precision, A is
singular to working precision.

8: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

NE_REAL

On entry, anorm = hvaluei.
Constraint: anorm � 0:0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

f07pgc NAG C Library Manual

f07pgc.2 [NP3645/7]

7 Accuracy

The computed estimate rcond is never less than the true value �, and in practice is nearly always less than
10�, although examples can be constructed where rcond is much larger.

8 Further Comments

A call to nag_dspcon (f07pgc) involves solving a number of systems of linear equations of the form

Ax ¼ b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately 2n2

floating-point operations but takes considerably longer than a call to nag_dsptrs (f07pec) with 1 right-hand
side, because extra care is taken to avoid overflow when A is approximately singular.

The complex analogues of this function are nag_zhpcon (f07puc) for Hermitian matrices and nag_zspcon
(f07quc) for symmetric matrices.

9 Example

To estimate the condition number in the 1-norm (or infinity-norm) of the matrix A, where

A ¼

2:07 3:87 4:20 �1:15
3:87 �0:21 1:87 0:63
4:20 1:87 1:15 2:06

�1:15 0:63 2:06 �1:81

1
CCA

0
BB@ :

Here A is symmetric indefinite, stored in packed form, and must first be factorized by nag_dsptrf (f07pdc).
The true condition number in the 1-norm is 75.68.

9.1 Program Text

/* nag_dspcon (f07pgc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf16.h>
#include <nagx02.h>

int main(void)
{

/* Scalars */
double anorm, rcond;
Integer ap_len, i, j, n;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo_enum;
Nag_OrderType order;

/* Arrays */
Integer *ipiv=0;
char uplo[2];
double *ap=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) ap[(2*n-J)*(J-1)/2 + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) ap[(2*n-I)*(I-1)/2 + J - 1]

order = Nag_RowMajor;

f07 – Linear Equations (LAPACK) f07pgc

[NP3645/7] f07pgc.3

#endif

INIT_FAIL(fail);
Vprintf("f07pgc Example Program Results\n\n");
/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);
ap_len = n * (n + 1)/2;

/* Allocate memory */
if (!(ipiv = NAG_ALLOC(n, Integer)) ||

!(ap = NAG_ALLOC(ap_len, double)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo);
if (*(unsigned char *)uplo == ’L’)

uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == ’U’)

uplo_enum = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
if (uplo_enum == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

Vscanf("%lf", &A_UPPER(i,j));
}

Vscanf("%*[^\n] ");
}

else
{

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= i; ++j)
Vscanf("%lf", &A_LOWER(i,j));

}
Vscanf("%*[^\n] ");

}

/* Compute norm of A */
f16rdc(order, Nag_OneNorm, uplo_enum, n, ap, &anorm, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f16rdc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Factorize A */
f07pdc(order, uplo_enum, n, ap, ipiv, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07pdc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Estimate condition number */
f07pgc(order, uplo_enum, n, ap, ipiv, anorm, &rcond, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07pgc.\n%s\n", fail.message);
exit_status = 1;

f07pgc NAG C Library Manual

f07pgc.4 [NP3645/7]

goto END;
}

if (rcond >= X02AJC)
Vprintf("Estimate of condition number =%10.2e\n\n", 1.0/rcond);

else
Vprintf("A is singular to working precision\n");

END:
if (ipiv) NAG_FREE(ipiv);
if (ap) NAG_FREE(ap);
return exit_status;

}

9.2 Program Data

f07pgc Example Program Data
4 :Value of N
’L’ :Value of UPLO
2.07
3.87 -0.21
4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 :End of matrix A

9.3 Program Results

f07pgc Example Program Results

Estimate of condition number = 7.57e+01

f07 – Linear Equations (LAPACK) f07pgc

[NP3645/7] f07pgc.5 (last)

	f07pgc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	ap
	ipiv
	anorm
	rcond
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_REAL
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

